Androgen receptor inactivation contributes to antitumor efficacy of 17A-hydroxylase/17,20-lyase inhibitor 3B-hydroxy-17-(1H-benzimidazole-1-yl)androsta-5, 16-diene in prostate cancer

نویسندگان

  • Tadas Vasaitis
  • Aashvini Belosay
  • Adam Schayowitz
  • Aakanksha Khandelwal
  • Pankaj Chopra
  • Lalji K. Gediya
  • Zhiyong Guo
  • Hong-Bin Fang
  • Vincent C.O. Njar
  • Angela M.H. Brodie
چکیده

We previously reported that our novel compound 3Bhydroxy-17-(1H-benzimidazole-1-yl)androsta-5,16-diene (VN/124-1) is a potent 17A-hydroxylase/17,20-lyase (CYP17) inhibitor/antiandrogen and strongly inhibits the formation and proliferation of human prostate cancer LAPC4 tumor xenografts in severe combined immunodeficient mice. In this study, we report that VN/124-1 and other novel CYP17 inhibitors also cause down-regulation of androgen receptor (AR) protein expression in vitro and in vivo. This mechanism of action seems to contribute to their antitumor efficacy. We compared the in vivo antitumor efficacy of VN/124-1 with that of castration and a clinically used antiandrogen, Casodex, and show that VN/124-1 is more potent than castration in the LAPC4 xenograft model. Treatment with VN/124-1 (0.13 mmol/kg twice daily) was also very effective in preventing the formation of LAPC4 tumors (6.94 versus 2410.28 mm in control group). VN/124-1 (0.13 mmol/kg twice daily) and VN/124-1 (0.13 mmol/kg twice daily) + castration induced regression of LAPC4 tumor xenografts by 26.55% and 60.67%, respectively. Treatments with Casodex (0.13 mmol/kg twice daily) or castration caused significant tumor suppression compared with control. Furthermore, treatment with VN/124-1 caused marked down-regulation of AR protein expression, in contrast to treatments with Casodex or castration that caused significant up-regulation of AR protein expression. The results suggest that VN/124-1 acts by several mechanisms (CYP17 inhibition, competitive inhibition, and down-regulation of the AR). These actions contribute to inhibition of the formation of LAPC4 tumors and cause regression of growth of established tumors. VN/ 124-1 is more efficacious than castration in the LAPC4 xenograft model, suggesting that the compound has potential for the treatment of prostate cancer. [Mol Cancer Ther 2008;7(8):2348–57]

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Androgen receptor inactivation contributes to antitumor efficacy of 17{alpha}-hydroxylase/17,20-lyase inhibitor 3beta-hydroxy-17-(1H-benzimidazole-1-yl)androsta-5,16-diene in prostate cancer.

We previously reported that our novel compound 3beta-hydroxy-17-(1H-benzimidazole-1-yl)androsta-5,16-diene (VN/124-1) is a potent 17alpha-hydroxylase/17,20-lyase (CYP17) inhibitor/antiandrogen and strongly inhibits the formation and proliferation of human prostate cancer LAPC4 tumor xenografts in severe combined immunodeficient mice. In this study, we report that VN/124-1 and other novel CYP17 ...

متن کامل

Management of Castration-resistant Prostate Cancer

s?&vmview;=abst_detail_view&confID;=114&abstract; ID=95300; cited November 9, 2012]15. Ryan CJ, Shah S, Efstathiou E, et al. Phase ii study of abiraterone acetate in chemotherapy-naive metastatic castrationresistant prostate cancer displaying bone flare discordant withserologic response. Clin Cancer Res 2011;17:4854–61.16. Bianchini D, Sandhu SK, Cassidy AM, et al. Durable radio-lo...

متن کامل

Synthesis and evaluation of novel 17-indazole androstene derivatives designed as CYP17 inhibitors.

A series of novel 1H- and 2H-indazole derivatives of the commercially available dehydroepiandrosterone acetate have been synthesized and tested for inhibition of human cytochrome 17alpha-hydroxylase-C(17,20)-lyase (CYP17), androgen receptor (AR) binding affinity, and cytotoxic potential against three prostate cancer (PC) cell lines.

متن کامل

Molecular Pathways Molecular Pathways: Inhibiting Steroid Biosynthesis in Prostate Cancer

A significant proportion of castration-resistant prostate cancers (CRPC) remains driven by ligand activation of the androgen receptor. Although the testes are the primary source of testosterone, testosterone can also be produced from peripheral conversion of adrenal sex hormone precursors DHEA and androstenedione in the prostate and other tissues. CYP17A1 catalyzes two essential reactions in th...

متن کامل

Targeting of CYP17A1 Lyase by VT-464 Inhibits Adrenal and Intratumoral Androgen Biosynthesis and Tumor Growth of Castration Resistant Prostate Cancer

Cytochrome P450 17α-hydroxylase/17,20-lyase (CYP17A1) is a validated treatment target for the treatment of metastatic castration-resistant prostate cancer (CRPC). Abiraterone acetate (AA) inhibits both 17α-hydroxylase (hydroxylase) and 17,20-lyase (lyase) reactions catalyzed by CYP17A1 and thus depletes androgen biosynthesis. However, coadministration of prednisone is required to suppress the m...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2008